Assistant professor

Tomas Knapen

Assistant professor

Phone: +31 (0) 20 598 99 74
Room: 1B-57

Personal webpage


I am working on an NWO ORA project investigating the multimodal spatial representation of attentional targets in the human brain using fMRI. Furthermore, I am involved in many of the ongoing ERC projects investigating reward and its impacts on attention and visual processing. The methods I use range from behaviour and psychophysics, to eye movement and pupil size recordings, EEG/MEG and fMRI. In terms of data analysis, I prefer to use fully open-source and documented methods (implemented in python) for the implementation of FIR and encoding model estimation.


After studying biology (theoretical / neurobiology) at the University of Amsterdam, I did a PhD at the physics of man department at Utrecht University on the topic of bistable perception. During and after my PhD I did psychophysics and fMRI projects at CalTech and Vanderbilt, in the Shimojo and Blake labs. My first postdoc was in Paris, France under the guidance of Patrick Cavanagh, during which I also conducted an fMRI experiment, again at Vanderbilt - but now at the Tong lab. After this postdoc I received an NWO VENI grant, which I used to investigate eye movement processes in the brain using fMRI, at the University of Amsterdam. At the end of this grant period, I left for a faculty position at the Cog Psy department at the VU University.

Research interests

I am interested in how the brain performs computations that allow it to perceive and act, and how these computations are learned. Specific topics of interest are 1. reward processing and neural plasticity in the visual system, 2. brain mechanism underlying attention and eye movements, leading into 3. the mechanisms of motor and perceptual learning. 4. I am also still very much involved in the investigation of bistable perception and its neural correlates.


Google Scholar

Recent publications

DM Van Es & T Knapen (2019) Implicit and explicit learning in reactive and voluntary saccade adaptation. PloS one 14 (1), e0203248
S Jahfari, J Theeuwes & T Knapen (2019) Learning in visual regions as support for the bias in future value-driven choice. bioRxiv, 523340
JC Van Slooten, S Jahfari, T Knapen & J Theeuwes (2018) How pupil responses track value-based decision-making during and after reinforcement learning. PLoS computational biology 14 (11), e10066321
SO Dumoulin & T Knapen (2018) How visual cortical organization is altered by ophthalmologic and neurologic disorders. Annual review of vision science1
LC Reteig, T Knapen, F Roelofs, KR Ridderinkhof & HA Slagter (2018) No evidence that transcranial direct current stimulation of the right frontal eye field affects latency or accuracy of prosaccades. Frontiers in Human Neuroscience 12
T van Mourik, L Snoek, T Knapen & DG Norris (2018) Porcupine: A visual pipeline tool for neuroimaging analysis. PLoS computational biology 14 (5), e1006064
J Brascamp, P Sterzer, R Blake & T Knapen (2018) Multistable perception and the role of the frontoparietal cortex in perceptual inference. Annual review of psychology 69, 77-10316
DM van Es, W van der Zwaag & T Knapen (2018) Retinotopic maps of visual space in the human cerebellum. bioRxiv, 455170
B McCoy, S Jahfari, G Engels, T Knapen & J Theeuwes (2018) Dopaminergic medication reduces striatal sensitivity to negative outcomes in Parkinson's disease. bioRxiv, 445528
T Mourik, LB Snoek, T Knapen & DG Norris (2018) Porcupine: A visual pipeline tool for neuroimaging analysis.
LC Reteig, T Knapen, FJFW Roelofs, KR Ridderinkhof & HA Slagter (2018) No evidence that frontal eye field tDCS affects latency or accuracy of prosaccades. bioRxiv, 351304
JC Van Slooten, S Jahfari, T Knapen & J Theeuwes (2018) Pupil responses as indicators of value-based decision-making. bioRxiv, 302166
T Knapen, D van Es & M Barendregt (2018) Mapping the Dark Side: Visual Selectivity of Default Network Deactivations. bioRxiv, 292524
DM van Es, J Theeuwes & T Knapen (2018) Spatial sampling in human visual cortex is modulated by both spatial and feature-based attention. bioRxiv, 1472231
JC Van Slooten, S Jahfari, T Knapen & J Theeuwes (2017) Individual differences in eye blink rate predict both transient and tonic pupil responses during reversal learning. PloS one 12 (9), e01856652
L Reteig, T Knapen, K Ridderinkhof & H Slagter (2017) Transcranial direct current stimulation of the right frontal eye field to affect saccade execution. Journal of Vision 17 (10), 898-898
JW de Gee, O Colizoli, NA Kloosterman, T Knapen, S Nieuwenhuis & ... (2017) Dynamic modulation of decision biases by brainstem arousal systems. Elife 6, e2323239
L Snoek, T Knapen & D Norris (2017) Porcupine: a visual pipeline tool for neuroimaging analysis. bioRxiv
S Jahfari, KR Ridderinkhof, AGE Collins, T Knapen, L Waldorp & MJ Frank (2017) Cross-task contributions of fronto-basal ganglia circuitry in response inhibition and conflict-induced slowing. bioRxiv, 1992994
E Kupers, J Brascamp & T Knapen (2016) Spatiotemporal BOLD correlates of switches in bistable perception. Journal of Vision 16 (12), 1216-1216

View full list of publications on Google Scholar